458. Molecular Polarisability. Electric Double Refraction of Solutions containing Optically Active Solutes.

By J. M. ECKERT and R. J. W. LE FÈVRE.

The possibility of measuring the electric double refraction of optically active compounds in dilute solution is examined by comparing results obtained for (\pm) -solutes with those for their (+)- or (-)-isomers. Molar Kerr constants are reported for inactive and active camphor, camphorquinone, diethyl tartrate, and N-benzoylamphetamine; at infinite dilution the values for each pair of isomers differ only by amounts which are within the range of experimental errors often experienced in such determinations.

OUR standard arrangement ^{1,2} for measuring the electric birefringence of a solution requires the latter to be traversed by a ray of light plane-polarised at 45° to a transverse electric field. The solution is placed between Nicol prisms, crossed for extinction before application of the field. Phase differences are determined with the compensator described by Szivessy and Dierkesmann.³ Two difficulties can be foreseen if the solution possesses natural optical rotatory power: (a) the field-polarisation angle will vary continuously as the light passes through the field, and (b) extinction under zero-field conditions will no longer involve polariser-analyser settings of $\pm \pi/2$ as required by the formulæ given in ref. 3. Of these, (a) is the more serious since it implies that the doubly refracting solution is not in the fixed azimuths $+\pi/4$, as normally used with optically inactive media, and that the maximum Kerr effect (induced by a field-polarisation angle of 45°) cannot be displayed by the liquid under examination. Since these considerations threaten the applicability of electric birefringence measurements to stereostructural questions concerning optically active substances, and since the assessment of their effects from a priori theory is complex, the problem has been approached experimentally.

EXPERIMENTAL

General.—Apparatus, procedures, symbols, and methods of calculation are as described or defined in refs. 1, 2, and 4. Contexts should prevent confusion between α , our usual symbol for the dielectric constant increment of a solution, and the conventional symbol of rotatory power.

Solvents.—These have been freshly-distilled calcium chloride-dried carbon tetrachloride or sodium-dried benzene, to which the following physical constants apply:

	ε	d_4^{25}	$n_{\rm D}^{25}$	$10^7 B$
Carbon tetrachloride Benzene	$2 \cdot 2270 \\ 2 \cdot 2725$	$1.5845 \\ 0.87378$	$1.4575 \\ 1.4973$	0·070 0·410

Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem. (Australia), 1955, 5, 261.
 Le Fèvre and Le Fèvre, (a) J., 1953, 4041; (b) J., 1954, 1577.
 Szivessy and Dierkesmann, Ann. Physik, 1931, 11, 949; Z. Instrumentenkunde, 1932, 52, 337.
 Le Fèvre, "Dipole Moments," Methuen, London, 3rd Edn., 1953.

2357

TABLE 1.	. Kerr e	effects, dielec	etric consta ben	ants, etc., zene at 25	for soluti 5°.	ons in carb	on tetrachlor	ide or
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	502 2·2872 2 1·57930 1 2·0002 0 whence Δ	$\begin{array}{c} (+ \\ 626 & 700 \\ 3036 & 2 \cdot 310 \\ 57837 & 1 \cdot 577 \\ 0002 & 0 \cdot 000 \\ \varepsilon = 12 \cdot 01_{\delta} w_2 \end{array}$	-)-Camphor 899 0 2:3340 31 1:57618 2 0:0004 - 13:34w ₂	in carbon 1021 2·3460 3 1·57416 0·0004 ², ∑∆d/∑u	$tetrachloria11112.35991.573130.0005v_2 = -1.00$	le 1473 15 2·4006 2·4 1·56975 1·5 — 0·0 02, ΣΔn/Σu	$ \begin{array}{r} 586 & 1617 \\ 145 & 2 \cdot 4177 \\ 6861 & 1 \cdot 56827 \\ 005 & 0 \cdot 0007 \\ \phi_2 &= 0 \cdot 042 \end{array} $	1816 2·4411 1·56659 0·0010
$10^{5}w_{2}$ $10^{7}\Delta B$	$\begin{array}{c} 122 \\ 0{\cdot}008 \end{array}$	164 0·012	220 0.020	350 0·033	422 0·041	624 0·066		
		w	nence 10.77	D = 1.420	$v_2 + 530w_2$	5		
$\frac{10^5 w_2}{\epsilon^{25} \cdots } \cdots \cdots$	$\begin{array}{c} 281 \\ 2 \cdot 2909 \end{array}$	(-)-C 349 $2 \cdot 3105$	amphorquin 393 2·3226	none in car 484 2·3448	rbon tetrach 578 2·3568	loride 706 2·3957	900 2·4412	
			whence	$\Delta \varepsilon / \Delta w_2$	= 23.67			
${10^5w_2 \ \dots \ d^{25} \ \dots \ \Delta n \ \dots \ \dots \ \Delta n}$	175 1·58329 0·0002	314 1·58209 0·0002	411 1·58133 0·0004	516 1·58044 0·0004	665 1·57950 0·0005	793 1·57830 0·0006	897 1·57794 0·0006	
		whence Σ	$\Delta d / \sum w_2 =$	-0.766, 2	$\sum \Delta n / \sum w_2 =$	= 0.077		
$10^{5}w_{2}$ $10^{7}\Delta B$	29 0·004	58 0·010	84 0·015	$ \begin{array}{r} 151 \\ 0.030 \\ B - 16.96 \end{array} $	293 0·066 ∞ → 1875	741 2		
		WI		D = 10.90	w ₂ + 10/5	w ₂ -		
$10^{5}w_{2}$ $10^{7}\Delta B$	163 0·025	(±)-C 290 0·054 v	Camphorqui 467 0.084 whence $\Sigma\Delta$	none in ca 763 0·125 B/∑w ₂ =	rbon tetrach 908 0·159 17·25 × 10	ploride		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 -0.0002 when	$Dieth 775 2.3016 5 1.5804 -0.0003 ce \sum \Delta \epsilon / \sum w_2$	$yl (+)-tarti 10. 3 2.3 43 1.5 3 -0.0 = 9.57, \sum l$	rate in card 57 3315 57859 9004 – Md/Sw ₂ =	bon tetrachl 1222 2·3455 1·57743 -0·0004 —0·562, ∑	oride 1689 $1 \cdot 57512$ $-0 \cdot 0005$ $\Delta n / \Sigma w_2 =$	25192.46181.57056-0.0008-0.034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 −0·0002 when 245 0·004	$\begin{array}{c} Dieth \\ 775 \\ 2 \cdot 3016 \\ 5 & 1 \cdot 5804 \\ - & 0 \cdot 0003 \\ ce \ \sum \Delta \varepsilon / \sum w_2 = \\ 343 \\ 0 \cdot 003 \end{array}$	$ \begin{array}{c} 100\\ 6\\ 2 \cdot 3\\ 43\\ 1 \cdot 5\\ 3\\ -0 \cdot 0\\ = 9 \cdot 57, \ \Sigma 2\\ 422\\ 0 \cdot 005\\ \text{whence } \Sigma 2 \end{array} $	rate in carl 57 315 (7859) = -20004 = -20004 = -200000000000000000000000000000000000	bon tetrachl 1222 $2 \cdot 3455$ $1 \cdot 57743$ $-0 \cdot 0004$ $-0 \cdot 562, \Sigma$ 750 $0 \cdot 009$ $1 \cdot 11 \times 10$	oride 1689 1.57512 -0.0005 $2\Delta n/\Sigma w_2 =$	2519 2·4618 1·57056 —0·0008 —0·034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 0·0002 when 245 0·004	$Dieth 775 2.3016 5 1.5804 -0.0003 ce \sum \Delta \varepsilon / \sum w_2 = 343 0.003$	$\begin{array}{c} yl (+)-tarti.\\ 10.\\ 3 & 2.3\\ 43 & 1.5\\ 3 & -0.0\\ = 9.57, \Sigma \\ 422\\ 0.005\\ \text{whence } \Sigma \\ 42k + vl (+)-ta \end{array}$	rate in carb 57 315 57 3004 $\Delta d/\Sigma w_2 = -$ 596 0.005 $\Delta B/\Sigma w_2 = -$ rtrate in ca	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac	oride 1689 1.57512 -0.0005 $\Delta n/\Sigma w_2 =$ -7 hloride	2519 2:4618 1:57056 0:0008 0:034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 - 0·0002 when 245 0·004 208 0·003	$Dieth 775 2.3016 5 1.5804 -0.0003 ce \sum \Delta \varepsilon / \sum w_2 = 343 0.003 Die 412 0.005$	$ \begin{array}{c} yl (+)-tark; \\ 10, \\ 3 & 2\cdot3 \\ 43 & 1\cdot5 \\ 3 & -0\cdot0 \\ = 9\cdot57, \Sigma 4 \\ 422 \\ 0\cdot005 \\ \text{whence } \Sigma 4 \\ thyl (\pm)-ta \\ 559 \\ 0\cdot006 \\ \text{whence } \Sigma 4 \end{array} $	rate in carl 57 515 57 515 $\sqrt{8315}$ $\sqrt{859}$ $\sqrt{9004}$ - $\sqrt{9004}$	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10	oride 1689 1.57512 -0.0005 $\Delta n / \Sigma w_2 =$ -7 hloride 2696 0.026 -7	2519 2·4618 1·57056 —0·0008 —0·034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 - 0·0002 when 245 0·004 208 0·003	$Dieth 775 2.3016 5 1.5804 -0.0003 ce \sum \Delta \varepsilon / \sum w_2 = 343 0.003 Die 412 0.005 $		rate in carl 57 57 57 57 57 57 57 57 57 57	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetracc 966 0·010 1·04 × 10	oride 1689 1.57512 -0.0005 $\Delta n / \Sigma w_2 =$ -7 hloride 2696 0.026 -7	2519 2·4618 1·57056 —0·0008 —0·034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 - 0·0002 when 245 0·004 208 0·003 275 2·2915	$Dieth 775 2.3016 5 1.5804 -0.0003 ce \sum \Delta \epsilon / \sum w_2 = 343 0.003 Die 412 0.005 (-355 2.2968)$	$\begin{array}{c} yl (+)-tark, \\ 10, \\ 3 & 2\cdot3 \\ 43 & 1\cdot5 \\ 3 & -0\cdot0 \\ = 9\cdot57, \sum 4 \\ 422 \\ 0\cdot005 \\ \text{whence } \sum 4 \\ 2 \\ 0\cdot006 \\ \text{whence } \sum 4 \\ 0\cdot006 \\ \text{whence } \sum 4 \\ 2 \\ \cdot)-N-Benzoy \\ 487 \\ 2 \cdot 3043 \\ \end{array}$	rate in carl 57 515 (7859) (004	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10 nine in ben 552 2·3108	oride 1689 1.57512 -0.0005 $\Delta n / \Sigma w_2 =$ -7 hloride 2696 0.026 -7 zene 610 2.3123	2519 2·4618 1·57056 —0·0008 —0·034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 386\\ 2\cdot 2653\\ 1,5821\\ -0\cdot 0002\\ \text{when}\\ 245\\ 0\cdot 004\\ \end{array}$	$\begin{array}{c} Dieth \\ 775 \\ 2 \cdot 3016 \\ 5 \\ - 0 \cdot 0003 \\ ce \ \sum \Delta \varepsilon / \sum w_2 = \\ 343 \\ 0 \cdot 003 \\ \end{array}$ $\begin{array}{c} Die \\ 412 \\ 0 \cdot 005 \\ (- \\ 355 \\ 2 \cdot 2968 \\ 232 \\ 0 \cdot 87434 \\ - \end{array}$		rate in carl 57 515 57 515 500 $\Delta d/\Sigma w_2 =$ 596 0.005 $\Delta B/\Sigma w_2 =$ rtrate in ca 803 0.009 $\Delta B/\Sigma w_2 =$ rtrate in carl 803 0.009 $\Delta B/\Sigma w_2 =$ 2.3068 $\Delta S24$ 0.87440 0.0002	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10 nine in ben 552 2·3108 2 = 6.68 374 0·87998 0·0004	oride 1689 $1 \cdot 57512$ $-0 \cdot 0005$ $\Delta n / \Sigma w_2 =$ -7 hloride 2696 $0 \cdot 026$ -7 zene 610 $2 \cdot 3123$ 425 $0 \cdot 0003$	$\begin{array}{c} 2519\\ 2\cdot4618\\ 1\cdot57056\\ -0\cdot0008\\ -0\cdot034\\ \end{array}$	575 0·87490 0·0007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	386 2·2653 1,5821 	$\begin{array}{c} Dieth \\ 775 \\ 2 \cdot 3016 \\ 5 \\ - 0 \cdot 0003 \\ \hline \\ ce \ \sum \Delta e / \sum w_2 = \\ 343 \\ 0 \cdot 003 \\ \hline \\ 0 \cdot 003 \\ \hline \\ 12 \\ 0 \cdot 005 \\ \hline \\ 412 \\ 0 \cdot 005 \\ \hline \\ 412 \\ 0 \cdot 005 \\ \hline \\ 232 \\ 0 \cdot 87434 \\ \hline \\ \hline \\ whence \end{array}$	$\begin{array}{c} yl (+)-tark;\\ 10,\\ 3&2.3\\ 43&1.5\\ 3&-0.0\\ =9.57, \sum \Delta \\ 422\\ 0.005\\ \text{whence } \sum \Delta \\ 422\\ 0.005\\ \text{whence } \sum \Delta \\ 487\\ 2.3043\\ \text{whence } \\ 302\\ 0.0002\\ e \sum \Delta d/\Sigma w_2 \end{array}$	rate in carl 57 57 57 57 57 57 57 57 57 57	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10 nine in ben 552 2·3108 2 = 6.68 374 0·87998 0·0004 $\Sigma \Delta n / \Sigma W_2$	oride 1689 1.57512 -0.0005 $\Delta n/\Sigma w_2 =$ -7 hloride 2696 0.026 -7 zene 610 2.3123 425 0.0003 = 0.082	$\begin{array}{r} 2519\\ 2\cdot4618\\ 1\cdot57056\\ -0\cdot0008\\ -0\cdot034\\ \end{array}$	575 0.87490 0.0007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 386\\ 2\cdot 2653\\ 1,5821\\ -0\cdot 0002\\ \text{when}\\ 245\\ 0\cdot 004\\ \end{array}$ $\begin{array}{c} 208\\ 0\cdot 003\\ \end{array}$ $\begin{array}{c} 275\\ 2\cdot 2915\\ 156\\ 0\cdot 87420\\ -\\ \end{array}$ $\begin{array}{c} 292\\ -0\cdot 004\\ \end{array}$	$\begin{array}{c} Dieth \\ 775 \\ 2 \cdot 3016 \\ 5 \\ - 0 \cdot 0003 \\ ce \ \sum \Delta \varepsilon / \sum w_2 = \\ 343 \\ 0 \cdot 003 \\ \end{array}$ $\begin{array}{c} Die \\ 412 \\ 0 \cdot 005 \\ \hline & (- \\ 355 \\ 2 \cdot 2968 \\ \hline & 232 \\ 0 \cdot 87434 \\ - \\ \hline & whence \\ 409 \\ - 0 \cdot 005 \\ \hline & whence \\ \end{array}$	$\begin{array}{c} yl (+)-tark;\\ 10,\\ 3&2\cdot3\\ 43&1\cdot5\\ 3&-0\cdot0\\ =9\cdot57, \Sigma 4\\ 422\\ 0\cdot005\\ \text{whence }\Sigma 4\\ 2thyl (\pm)-ta\\ 559\\ 0\cdot006\\ \text{whence }\Sigma 4\\ 2\cdot3043\\ \text{whence}\\ 302\\ 0\cdot0002\\ e\sum \Delta d/\Sigma w_2\\ 418\\ -0\cdot006\\ \text{whence }\Sigma \Delta d\\ \end{array}$	rate in carl 57 515 (7859) (004) $(24)\Sigma w_2 =$ 596 (0.005) $(24)\Sigma w_2 =$ $(25)C w_2 =$	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10 nine in ben 552 2·3108 2 = 6·68 374 0·87998 0·0004 $\Sigma \Delta n / \Sigma W_2$ 597 -0·008 -1·44 × 1	oride 1689 $1 \cdot 57512$ $-0 \cdot 0005$ $\Delta n / \Sigma w_2 =$ $\Delta n / \Sigma w_2 =$ 2696 $0 \cdot 026$ -7 zene 610 $2 \cdot 3123$ 3 425 $0 \cdot 0003$ $= 0 \cdot 082$ 9 0^{-7}	$\begin{array}{c} 2519\\ 2\cdot4618\\ 1\cdot57056\\ -0\cdot0008\\ -0\cdot034\\ \end{array}$	575 0.87490 0.0007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 386\\ 2\cdot 2653\\ 1,5821\\ -0\cdot 0002\\ \text{when}\\ 245\\ 0\cdot 004\\ \\ 208\\ 0\cdot 003\\ \\ 275\\ 2\cdot 2915\\ 156\\ 0\cdot 87420\\ -\\ \\ 292\\ -0\cdot 004\\ \end{array}$	$\begin{array}{c} Dieth \\ 775 \\ 2 \cdot 3016 \\ 5 \\ - 0 \cdot 0003 \\ ce \sum \Delta \varepsilon / \sum w_2 = \\ 343 \\ 0 \cdot 003 \\ \end{array}$ $\begin{array}{c} Die \\ 412 \\ 0 \cdot 005 \\ (- \\ 355 \\ 2 \cdot 2968 \\ \end{array}$ $\begin{array}{c} 232 \\ 0 \cdot 87434 \\ - \\ whence \\ 409 \\ - 0 \cdot 005 \\ \end{array}$ $whence \\ \end{array}$	$\begin{array}{c} yl (+)-tark;\\ 10,\\ 3 & 2\cdot3\\ 43 & 1\cdot5\\ 3 & -0\cdot0\\ = 9\cdot57, \sum \Delta \\ 422\\ 0\cdot005\\ \text{whence } \sum \Delta \\ 20006\\ \text{whence } \sum \Delta \\ 422\\ 0\cdot006\\ \text{whence } \sum \Delta \\ 487\\ 2\cdot3043\\ \text{whence}\\ 302\\ 0\cdot0002\\ e \sum \Delta d/\sum \\ w_2\\ 418\\ -0\cdot006\\ \text{whence } \sum \Delta \\ 418\\ -0\cdot006\\ \text{whence } \sum \\ 418\\ -0\cdot006\\ -0.2\\ -0$	rate in carl 57 57 57 57 57 57 57 57 57 57	bon tetrachl 1222 2·3455 1·57743 -0·0004 $-0.562, \Sigma$ 750 0·009 1·11 × 10 arbon tetrac 966 0·010 1·04 × 10 nine in ben 552 2·3108 2 = 6·68 374 0·87998 0·0004 $\Sigma \Delta n / \Sigma W_2$ 597 -0.008 -1.44 × 1 amine in be	oride 1689 1.57512 -0.0005 $\Delta n/\Sigma w_2 =$ -7 hloride 2696 0.026 -7 zene 610 2.3123 425 0.0003 = 0.082 0 0-7 enzene	$\begin{array}{c} 2519\\ 2\cdot4618\\ 1\cdot57056\\ -0\cdot0008\\ -0\cdot034\\ \end{array}$	575 0.87490 0.0007

Solutes.—These were recrystallised or redistilled just before use. (-)-Camphorquinone was prepared by oxidation 5 of (+)-camphor under reflux with selenium dioxide for 3-4 hr. Filtration, precipitation by neutralisation, and crystallisation from light petroleum yielded orange needles, $[\alpha]_{\rm p} = -100.3^{\circ}$ (toluene). (±)-Camphorquinone resulted from a similar treatment of (\pm) -camphor. Diethyl (+)-tartrate, a commercial sample of high purity (from British Industrial Solvents), after distillation at 160–162°/12–15 mm., had $[\alpha]_{\rm p} = +5.0^{\circ}$. Diethyl racemate was prepared by following the directions of Vogel.⁶ (+)- and (\pm) -Amphetamine, obtained as oils from the hydrochlorides by treatment with alkali, proved to be insufficiently soluble in either benzene or carbon tetrachloride, and were therefore converted by the Schotten-Baumann reaction 6 into the corresponding N-benzoyl derivatives.

Measurements.—These are listed in Table 1, and calculated quantities, including dipole moments and molar Kerr constants at infinite dilution, in Table 2.

Previous determinations. Dipole moments in Debye (D) units have been recorded (for benzene solutions at 25°, unless otherwise stated) as follows (references in parentheses):

 (\pm) -Camphor: 2.95, (7), 22°; 2.94, (8), 22°; 3.05, (9), 20°; 2.91 (10), 20°; 3.10 (11); 3.09, (12), in CCl₄. (\pm)-Camphorquinone: 4.46, (13), 4.78, (14), 35°. Diethyl (\pm)-tartrate: 3.16, (15), 38°; 3·10, (16); 3·45, (11). Diethyl (+)-tartrate: 3·46, (11).

No molar Kerr constants for the solutes of Tables 1 and 2 are in the literature; de Mallemann 17 mentions the electric birefringence of some solutions of camphor in hexane, and Schob ¹⁸ reports the Kerr constant B of liquid ethyl (+)-tartrate from 0° to 80° , but in neither case are the data relevant to the present inquiry.

TABLE 2. Calculation of results.

	αε1	β	γ	δ	${}_{\infty}P_{2}$ (c.c.)	R (c.c.)	(µ) (D) *	$10^{12} \infty (m K_2)$
(+)-Camphor	12.02	-0.632	0.029	106	239.3	44 ·8	3 ⋅06	116
(\pm) -Camphor	12.18	-0.615	0.032	105				1156
(-)-Camphorquinone	23.67	-0.484	0.053	242	461 ·4	46.6	4 · 4 9	289
(\pm) -Camphorquinone				246				294 †
Diethyl (+)-tartrate	9.58	-0.355	-0.023	15.9	260.2	45.7	3.22	19.7
Diethyl (\pm) -tartrate				14·8				18.0
(-)-N-Benzoylamphetamine	6.68	0.230	0.055	-3.5	$363 \cdot 2$	72.8	3.74	-107
(\pm) -N-Benzoylamphetamine				-3.6				-110

* Calculated for distortion polarisation of $1.05R_{\rm D}$.

[†] Values of $\alpha \epsilon_1$, β, and γ measured for optically active species were assumed to hold for the corresponding racemate within the limits of experimental error.¹¹

DISCUSSION

The last column of Table 2 shows that standard procedures 1,2 for the extrapolation of observations can lead to values of molar Kerr constants at infinite dilution which, for each pair of optically active-inactive isomers, differ no more than repeated determinations on a single inactive solute sometimes do. The situation resembles that found by Le Fèvre and Maramba ¹¹ for the total polarisations of such pairs, values of ${}_{\infty}P_2$ being the same, within the normal range of experimental error, although the rates of change with concentration of P_2 were not always identical. If the differences, ΔB , listed in Table 1, between the Kerr constants of the solutions and solvent, are plotted against w_2 for the four solute pairs

- ⁵ Evans, Ridgion, and Simonsen, J., 1934, 137.
 ⁶ Vogel, "Practical Organic Chemistry," Longmans, London, 3rd Edn., 1956.
 ⁷ Donle and Volkert, Z. phys. Chem. (Leipzig), 1930, B, 8, 60.
 ⁸ Wolf, Physikal. Z., 1930, 31, 227.
 ⁹ Higasi, Bull. Inst. Phys. Chem. Res. Tokyo, 1932, 11, 729.
 ¹⁰ Sahney, Burucha, and Sarua, J. Ind. Chem. Soc., 1948, 25, 285.
 ¹¹ Le Fèvre and Maramba, J., 1952, 235.
 ¹² Le Fèvre and Le Fèvre, J., 1956, 3549.
 ¹³ Le Fèvre, Maramba, and Werner, J., 1953, 2496.
 ¹⁴ Narasimhan, Proc. Indian Acad. Sci., 1953, 37A, 551.
 ¹⁵ Wolf, Trans. Faraday Soc., 1930, 26, 315.

- ¹⁵ Wolf, Trans. Faraday Soc., 1930, 26, 315.
 ¹⁶ Wolf and Bodenheimer, Z. physikal. Chem., 1931, Bodenstein Festschrift, 620.
 ¹⁷ de Mallemann, Ann. Physique, 1924, 2, 99; Compt. rend., 1923, 176, 380; 177, 1028.
- ¹⁸ Schob, Compt. rend., 1934, 198, 2232.

under examination, points for the inactive form are in no case superior to those for the active form; in two of the instances the divergence, making $\Delta B/w_2$ less positive for the (\pm) - than for the (+)- or (-)- variety, clearly increases with w_2 .

Since, as Table 10 in ref. 2(b) illustrates, errors in $_{\infty}(_{m}K_{2})$ are mostly due to those in δ (by which ΔB is related to w_{2}) it is obvious that when dealing with an optically active solute particular care must be taken with the value of ΔB for the stronger solutions, because in the process of fitting observed ΔB 's by the method of least squares to the equation $(\Delta B)_{w_{1}} = aw_{2} + bw_{2}^{2}$ the value of a, *i.e.* $b_{1}\delta$ for $w_{2} = 0$, is sensitively affected by these larger ΔB 's; even so, the technique here justified is practically simpler than that suggested by Ilberg,¹⁹ namely, to place the Kerr cell within a solenoid and to nullify the optical rotation by a superposed Faraday effect.

The award of a C.S.I.R.O. Senior Postgraduate Studentship to J. M. E. is gratefully acknowledged.

University of Sydney, Sydney, N.S.W., Australia.

[Received, October 31st, 1960.]

¹⁹ Ilberg, Physikal. Z., 1925, 26, 901.